
GNU nano
a small and friendly text editor

version 8.0

Chris Allegretta

This manual documents the GNU nano text editor.

The contents of this manual are part of the GNU nano distribution.

Copyright c© 1999-2009, 2014-2024 Free Software Foundation, Inc.

This document is dual-licensed. You may distribute and/or modify it under
the terms of either of the following licenses:

* The GNU General Public License, as published by the Free Software Foun-
dation, version 3 or (at your option) any later version. You should have re-
ceived a copy of the GNU General Public License along with this program.
If not, see https://www.gnu.org/licenses/.

* The GNU Free Documentation License, as published by the Free Software
Foundation, version 1.2 or (at your option) any later version, with no Invari-
ant Sections, no Front-Cover Texts, and no Back-Cover Texts. You should
have received a copy of the GNU Free Documentation License along with
this program. If not, see https://www.gnu.org/licenses/.

You may contact the original author by e-mail: chrisa@asty.org

Or contact the current maintainer: bensberg@coevern.nl

For suggesting improvements: nano-devel@gnu.org

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
mailto:chrisa@asty.org
mailto:bensberg@coevern.nl
mailto:nano-devel@gnu.org

1

1 Introduction

GNU nano is a small and friendly text editor. Besides basic text edit-
ing, nano offers features like undo/redo, syntax coloring, interactive search-
and-replace, auto-indentation, line numbers, word completion, file locking,
backup files, and internationalization support.

The original goal for nano was to be a complete bug-for-bug emulation of
Pico. But currently the goal is to be as compatible as is reasonable while of-
fering a superset of Pico’s functionality. See Chapter 9 [Pico Compatibility],
page 35, for more details on how nano and Pico differ.

Since version 4.0, nano no longer hard-wraps overlong lines by default. It
also by default uses linewise scrolling, and by default includes the line below
the title bar in the editing area. In case you want the old, Pico behavior back,
you can use the following options: --breaklonglines, --jumpyscrolling,
and --emptyline (or -bje).

Since version 8.0, ^F starts a forward search, ^B starts a backward search,
M-F searches the next occurrence forward, and M-B searches the next occur-
rence backward. If you want those keystrokes to do what they did before
version 8.0, see the rebindings in the sample nanorc file.

Please report bugs via https://savannah.gnu.org/bugs/?group=nano.

Questions about using nano you can ask at help-nano@gnu.org.

For background information see https://nano-editor.org/.

https://savannah.gnu.org/bugs/?group=nano
mailto:help-nano@gnu.org
https://nano-editor.org/

2

2 Invoking

The usual way to invoke nano is:

nano [FILE]

But it is also possible to specify one or more options (see Chapter 6
[Command-line Options], page 8), and to edit several files in a row.

The cursor can be put on a specific line of a file by adding the line number
with a plus sign before the filename, and even in a specific column by adding
it with a comma. Negative numbers count from the end of the file or line.
The line and column numbers may also be specified by gluing them with
colons after the filename. (When a filename contains a colon followed by
digits, escape the colon by preceding it with a triple backslash.)

The cursor can be put on the first or last occurrence of a specific string by
specifying that string after +/ or +? before the filename. The string can be
made case sensitive and/or caused to be interpreted as a regular expression
by inserting a c and/or r after the plus sign. These search modes can be
explicitly disabled by using the uppercase variant of those letters: C and/or
R. When the string contains spaces, it needs to be enclosed in quotes. A
more complete command synopsis thus is:

nano [OPTION]... [[+LINE[,COLUMN]|+[crCR]{/|?}STRING] FILE]...

Normally, however, you set your preferred options in a nanorc file (see
Chapter 8 [Nanorc Files], page 17). And when using set positionlog (mak-
ing nano remember the cursor position when you close a file), you will rarely
need to specify a line number.

As a special case: when instead of a filename a dash is given, nano will
read data from standard input. This means you can pipe the output of a
command straight into a buffer, and then edit it.

3

3 Editor Basics

3.1 Screen Layout
The default screen of nano consists of four areas. From top to bottom these
are: the title bar, the edit window, the status bar, and two help lines.

The title bar consists of three sections: left, center and right. The section
on the left displays the version of nano being used. The center section
displays the current filename, or "New Buffer" if the file has not yet been
named. The section on the right displays "Modified" if the file has been
modified since it was last saved or opened.

The status bar is the third line from the bottom of the screen. It shows
important and informational messages. Any error messages that occur from
using the editor will appear on the status bar. Any questions that are asked
of the user will be asked on the status bar, and any user input (search strings,
filenames, etc.) will be input on the status bar.

The two help lines at the bottom of the screen show some of the most
essential functions of the editor.

3.2 Entering Text
nano is a "modeless" editor. This means that all keystrokes, with the ex-
ception of Control and Meta sequences, enter text into the file being edited.

Characters not present on the keyboard can be entered in two ways:

• For characters with a single-byte code, pressing the Esc key twice and
then typing a three-digit decimal number (from 000 to 255) will make
nano behave as if you typed the key with that value.

• For any possible character, pressing M-V (Alt+V) and then typing a
series of hexadecimal digits (at most six, or concluded with Enter or
Space) will enter the corresponding Unicode character into the buffer.

For example, typing Esc Esc 2 3 4 will enter the character "ê" — useful
when writing about a French party. Typing M-V 0 0 2 2 c 4 will enter the
symbol "�", a little diamond.

Typing M-V followed by anything other than a hexadecimal digit will
enter this keystroke verbatim into the buffer, allowing the user to insert
literal control codes (except ^J) or escape sequences.

3.3 Commands
Commands are given by using the Control key (Ctrl, shown as ^) or the
Meta key (Alt or Cmd, shown as M-).

• A control-key sequence is entered by holding down the Ctrl key and
pressing the desired key.

Chapter 3: Editor Basics 4

• A meta-key sequence is entered by holding down the Meta key (normally
the Alt key) and pressing the desired key.

If for some reason on your system the combinations with Ctrl or Alt
do not work, you can generate them by using the Esc key. A control-key
sequence is generated by pressing the Esc key twice and then pressing the
desired key, and a meta-key sequence by pressing the Esc key once and then
pressing the desired key.

3.4 The Cutbuffer
Text can be cut from a file a whole line at a time with ^K. The cut line
is stored in the cutbuffer. Consecutive strokes of ^K will add each cut line
to this buffer, but a ^K after any other keystroke will overwrite the entire
cutbuffer.

The contents of the cutbuffer can be pasted at the current cursor position
with ^U.

A line of text can be copied into the cutbuffer (without cutting it) with
M-6.

3.5 The Mark
Text can be selected by first ’setting the Mark’ with ^6 or M-A and then
moving the cursor to the other end of the portion to be selected. The selected
portion of text will be highlighted. This selection can now be cut or copied
in its entirety with a single ^K or M-6. Or the selection can be used to limit
the scope of a search-and-replace (^\) or spell-checking session (^T^T).

On some terminals, text can be selected also by holding down Shift while
using the cursor keys. Holding down the Ctrl or Alt key too will increase
the stride. Such a selection is cancelled upon any cursor movement where
Shift isn’t held.

Cutting or copying selected text toggles off the mark automatically. If
needed, it can be toggled off manually with another ^6 or M-A.

3.6 Search and Replace
With the Search command (^F or ^W) one can search the current buffer for
the occurrence of any string. The default search mode is forward, case-
insensitive, and for literal strings. But one can search backwards by toggling
M-B, search case sensitively with M-C, and interpret regular expressions in
the search string with M-R.

With the Replacement command (M-R or ^\) one can replace a given
string (or regular expression) with another string. When a regular expression
contains fragments between parentheses, the replacement string can refer
back to these fragments via \1 to \9.

Chapter 3: Editor Basics 5

For each occurrence of the search string you will be asked whether to
replace it. You can choose Yes (replace it), or No (skip this one), or All
(replace all remaining occurrences without asking any more), or Cancel (stop
with replacing, but replacements that have already been made will not be
undone).

If before a replacing session starts a region is marked, then only occur-
rences of the search string within the marked region will be replaced.

A regular expression always covers just one line — it cannot span multiple
lines. And neither a search string nor a replacement string can contain a
newline (LF).

3.7 Using the Mouse
When mouse support has been configured and enabled, a single mouse click
places the cursor at the indicated position. Clicking a second time in the
same position toggles the mark. Clicking in the two help lines executes the
selected shortcut. To be able to select text with the left button, or paste
text with the middle button, hold down the Shift key during those actions.

The mouse will work in the X Window System, and on the console when
gpm is running.

3.8 Anchors
With M-Ins you can place an anchor (a kind of temporary bookmark) at
the current line. With M-PgUp and M-PgDn you can jump to an anchor in
the backward/forward direction. This jumping wraps around at the top and
bottom.

When a line with an anchor is removed, the line where the cursor ends
up inherits the anchor. After performing an operation on the entire buffer
(like formatting it, piping it through a command, or doing an external spell
check on it), any anchors that were present are gone. And when you close
the buffer, all its anchors simply disappear; they are not saved.

Anchors are visualized in the margin when line numbers are activated.

3.9 Limitations
The recording and playback of keyboard macros works correctly only on a
terminal emulator, not on a Linux console (VT), because the latter does not
by default distinguish modified from unmodified arrow keys.

6

4 The Help Viewer

The built-in help in nano is available by pressing ^G. It is fairly self-
explanatory. It documents the various parts of the editor and the available
keystrokes. Navigation is via the ^Y (Page Up) and ^V (Page Down) keys.
^X exits from the help viewer.

7

5 The File Browser

When in the Read-File (^R) or Write-Out menu (^O), pressing ^T will invoke
the file browser. Here, one can navigate directories in a graphical manner in
order to find the desired file.

Basic movement in the file browser is accomplished with the arrow and
other cursor-movement keys. More targeted movement is accomplished by
searching, via ^W or w, or by changing directory, via ^_ or g. The behavior
of the Enter key (or s) varies by what is currently selected. If the currently
selected object is a directory, the file browser will enter and display the
contents of the directory. If the object is a file, this filename and path are
copied to the status bar, and the file browser exits.

8

6 Command-line Options

nano accepts the following options from the command line:

-A
--smarthome

Make the Home key smarter. When Home is pressed anywhere
but at the very beginning of non-whitespace characters on a
line, the cursor will jump to that beginning (either forwards or
backwards). If the cursor is already at that position, it will jump
to the true beginning of the line.

-B
--backup When saving a file, back up the previous version of it, using the

current filename suffixed with a tilde (~).

-C directory
--backupdir=directory

Make and keep not just one backup file, but make and keep
a uniquely numbered one every time a file is saved — when
backups are enabled. The uniquely numbered files are stored in
the specified directory.

-D
--boldtext

For the interface, use bold instead of reverse video. This will be
overridden by setting the options titlecolor, statuscolor,
promptcolor, minicolor, keycolor, functioncolor,
numbercolor, and/or selectedcolor in your nanorc file. See
[set keycolor], page 19, for details.

-E
--tabstospaces

Convert each typed tab to spaces — to the number of spaces
that a tab at that position would take up. (Note: pasted tabs
are not converted.)

-F
--multibuffer

Read a file into a new buffer by default.

-G
--locking

Enable vim-style file locking when editing files.

-H
--historylog

Save the last hundred search strings and replacement strings
and executed commands, so they can be easily reused in later
sessions.

Chapter 6: Command-line Options 9

-I
--ignorercfiles

Don’t look at the system’s nanorc file nor at the user’s nanorc.

-J
--guidestripe

Draw a vertical stripe at the given column, to help judge the
width of the text. (The color of the stripe can be changed with
set stripecolor in your nanorc file.)

-K
--rawsequences

Interpret escape sequences directly, instead of asking ncurses
to translate them. (If you need this option to get some keys to
work properly, it means that the terminfo terminal description
that is used does not fully match the actual behavior of your
terminal. This can happen when you ssh into a BSD machine,
for example.) Using this option disables nano’s mouse support.

-L
--nonewlines

Don’t automatically add a newline when a text does not end
with one. (This can cause you to save non-POSIX text files.)

-M
--trimblanks

Snip trailing whitespace from the wrapped line when automatic
hard-wrapping occurs or when text is justified.

-N
--noconvert

Disable automatic conversion of files from DOS/Mac format.

-O
--bookstyle

When justifying, treat any line that starts with whitespace as
the beginning of a paragraph (unless auto-indenting is on).

-P
--positionlog

For the 200 most recent files, log the last position of the cursor,
and place it at that position again upon reopening such a file.

-Q "regex"
--quotestr="regex"

Set the regular expression for matching the quoting part of a line.
The default value is "^([\t]*([!#%:;>|}]|//))+". (Note
that \t stands for a literal Tab character.) This makes it possi-
ble to rejustify blocks of quoted text when composing email, and
to rewrap blocks of line comments when writing source code.

Chapter 6: Command-line Options 10

-R
--restricted

Restricted mode: don’t read or write to any file not specified
on the command line. This means: don’t read or write history
files; don’t allow suspending; don’t allow spell checking; don’t
allow a file to be appended to, prepended to, or saved under
a different name if it already has one; and don’t make backup
files. Restricted mode can also be activated by invoking nano
with any name beginning with r (e.g. rnano).

-S
--softwrap

Display over multiple screen rows lines that exceed the screen’s
width. (You can make this soft-wrapping occur at whitespace
instead of rudely at the screen’s edge, by using also --atblanks.)
(The old short option, -$, is deprecated.)

-T number
--tabsize=number

Set the displayed tab length to number columns. The value of
number must be greater than 0. The default value is 8.

-U
--quickblank

Make status-bar messages disappear after 1 keystroke instead of
after 20. Note that option -c (--constantshow) overrides this.
When option --minibar or --zero is in effect, --quickblank
makes a message disappear after 0.8 seconds instead of after the
default 1.5 seconds.

-V
--version

Show the current version number and exit.

-W
--wordbounds

Detect word boundaries differently by treating punctuation
characters as parts of words.

-X "characters"
--wordchars="characters"

Specify which other characters (besides the normal alphanu-
meric ones) should be considered as parts of words. When using
this option, you probably want to omit -W (--wordbounds).

-Y name
--syntax=name

Specify the syntax to be used for highlighting. See Section 8.2
[Syntax Highlighting], page 24, for more info.

Chapter 6: Command-line Options 11

-Z
--zap Let an unmodified Backspace or Delete erase the marked re-

gion (instead of a single character, and without affecting the
cutbuffer).

-a
--atblanks

When doing soft line wrapping, wrap lines at whitespace instead
of always at the edge of the screen.

-b
--breaklonglines

Automatically hard-wrap the current line when it becomes over-
long. (This option is the opposite of -w (--nowrap) — the last
one given takes effect.)

-c
--constantshow

Constantly display the cursor position (line number, column
number, and character number) on the status bar. Note that
this overrides option -U (--quickblank).

-d
--rebinddelete

Interpret the Delete and Backspace keys differently so that
both work properly. You should only use this option when on
your system either Backspace acts like Delete or Delete acts
like Backspace.

-e
--emptyline

Do not use the line below the title bar, leaving it entirely blank.

-f file
--rcfile=file

Read only this file for setting nano’s options, instead of reading
both the system-wide and the user’s nanorc files.

-g
--showcursor

Make the cursor visible in the file browser (putting it on the
highlighted item) and in the help viewer. Useful for braille users
and people with poor vision.

-h
--help Show a summary of command-line options and exit.

-i
--autoindent

Automatically indent a newly created line to the same number
of tabs and/or spaces as the previous line (or as the next line if
the previous line is the beginning of a paragraph).

Chapter 6: Command-line Options 12

-j
--jumpyscrolling

Scroll the buffer contents per half-screen instead of per line.

-k
--cutfromcursor

Make the ’Cut Text’ command (normally ^K) cut from the cur-
rent cursor position to the end of the line, instead of cutting the
entire line.

-l
--linenumbers

Display line numbers to the left of the text area. (Any line with
an anchor additionally gets a mark in the margin.)

-m
--mouse Enable mouse support, if available for your system. When en-

abled, mouse clicks can be used to place the cursor, set the
mark (with a double click), and execute shortcuts. The mouse
will work in the X Window System, and on the console when
gpm is running. Text can still be selected through dragging by
holding down the Shift key.

-n
--noread Treat any name given on the command line as a new file. This

allows nano to write to named pipes: it will start with a blank
buffer, and will write to the pipe when the user saves the "file".
This way nano can be used as an editor in combination with for
instance gpg without having to write sensitive data to disk first.

-o directory
--operatingdir=directory

Set the operating directory. This makes nano set up something
similar to a chroot.

-p
--preserve

Preserve the ^Q (XON) and ^S (XOFF) sequences so data being
sent to the editor can be stopped and started. Note that option
-/ (--modernbindings) overrides this.

-q
--indicator

Display a "scrollbar" on the righthand side of the edit window.
It shows the position of the viewport in the buffer and how much
of the buffer is covered by the viewport.

-r number
--fill=number

Set the target width for justifying and automatic hard-wrapping
at this number of columns. If the value is 0 or less, wrapping

Chapter 6: Command-line Options 13

will occur at the width of the screen minus number columns,
allowing the wrap point to vary along with the width of the
screen if the screen is resized. The default value is -8.

-s "program [argument ...]"
--speller="program [argument ...]"

Use the given program to do spell checking and correcting. By
default, nano uses the command specified in the SPELL environ-
ment variable. If SPELL is not set, and --speller is not specified
either, then nano uses its own interactive spell corrector, which
requires either hunspell or GNU spell to be installed.

-t
--saveonexit

Save a changed buffer without prompting (when exiting with
^X). This can be handy when nano is used as the composer of
an email program.

-u

--unix Save a file by default in Unix format. This overrides nano’s
default behavior of saving a file in the format that it had. (This
option has no effect when you also use --noconvert.)

-v
--view Don’t allow the contents of the file to be altered: read-only

mode. This mode allows the user to open also other files for
viewing, unless --restricted is given too. (Note that this op-
tion should NOT be used in place of correct file permissions to
implement a read-only file.)

-w
--nowrap Do not automatically hard-wrap the current line when it be-

comes overlong. This is the default. (This option is the opposite
of -b (--breaklonglines) — the last one given takes effect.)

-x
--nohelp Expert mode: don’t show the two help lines at the bottom of

the screen. This affects the location of the status bar as well, as
in Expert mode it is located at the very bottom of the editor.

Note: When accessing the help system, Expert mode is tem-
porarily disabled to display the help-system navigation keys.

-y
--afterends

Make Ctrl+Right and Ctrl+Delete stop at word ends instead
of beginnings.

-!
--magic When neither the file’s name nor its first line give a clue, try

using libmagic to determine the applicable syntax.

Chapter 6: Command-line Options 14

-%
--stateflags

Use the top-right corner of the screen for showing some state
flags: I when auto-indenting, M when the mark is on, L when
hard-wrapping (breaking long lines), R when recording a macro,
and S when soft-wrapping. When the buffer is modified, a star
(*) is shown after the filename in the center of the title bar.

-_
--minibar

Suppress the title bar and instead show information about the
current buffer at the bottom of the screen, in the space for the
status bar. In this "mini bar" the filename is shown on the left,
followed by an asterisk if the buffer has been modified. On the
right are displayed the current line and column number, the code
of the character under the cursor (in Unicode format: U+xxxx),
the same flags as are shown by --stateflags, and a percentage
that expresses how far the cursor is into the file (linewise). When
a file is loaded or saved, and also when switching between buffers,
the number of lines in the buffer is displayed after the filename.
This number is cleared upon the next keystroke, or replaced
with an [i/n] counter when multiple buffers are open. The line
plus column numbers and the character code are displayed only
when --constantshow is used, and can be toggled on and off
with M-C. The state flags are displayed only when --stateflags
is used.

-0
--zero Hide all elements of the interface (title bar, status bar, and help

lines) and use all rows of the terminal for showing the contents
of the buffer. The status bar appears only when there is a sig-
nificant message, and disappears after 1.5 seconds or upon the
next keystroke. With M-Z the title bar plus status bar can be
toggled. With M-X the help lines.

-/
--modernbindings

Use key bindings similar to the ones that most modern pro-
grams use: ^X cuts, ^C copies, ^V pastes, ^Z undoes, ^Y redoes,
^F searches forward, ^G searches next, ^S saves, ^O opens a file,
^Q quits, and (when the terminal permits) ^H shows help. Fur-
thermore, ^A sets the mark, ^R makes replacements, ^D searches
previous, ^P shows the position, ^T goes to a line, ^W writes out
a file, and ^E executes a command. Note that this overrides
option -p (--preserve).

Chapter 6: Command-line Options 15

Option -z (--suspendable) has been removed. Suspension is enabled by
default, reachable via ^T^Z. (If you want a plain ^Z to suspend nano, add
bind ^Z suspend main to your nanorc.)

16

7 Feature Toggles

Toggles allow you to change certain aspects of the editor while you are
editing, aspects that you would normally specify via command-line options
or nanorc options. Each toggle can be flicked via a Meta-key combination —
the Meta key is normally the Alt key (see Section 3.3 [Commands], page 3,
for more details). The following global toggles are available:

Constant Cursor Position Display
M-C toggles the -c (--constantshow) command-line option.

Smart Home Key
M-H toggles the -A (--smarthome) command-line option.

Auto Indent
M-I toggles the -i (--autoindent) command-line option.

Cut From Cursor To End-of-Line
M-K toggles the -k (--cutfromcursor) command-line option.

Long-Line Wrapping
M-L toggles the -b (--breaklonglines) command-line option.

Mouse Support
M-M toggles the -m (--mouse) command-line option.

Line Numbers
M-N toggles the -l (--linenumbers) command-line option.

Tabs To Spaces
M-O toggles the -E (--tabstospaces) command-line option.

Whitespace Display
M-P toggles the displaying of whitespace (see [Whitespace],
page 23).

Soft Wrapping
M-S toggles the -S (--softwrap) command-line option.

Expert M-X toggles the -x (--nohelp) command-line option.

Syntax Coloring
M-Y toggles syntax coloring, when your nanorc defines syntaxes
(see Section 8.2 [Syntax Highlighting], page 24).

Hidden Interface
M-Z toggles the -0 (--zero) command-line option, but without
the -x (--nohelp) part. That is: it toggles just the title bar
plus status bar (or the combined mini bar plus status bar), not
the help lines. The latter are toggled with M-X.

17

8 Nanorc Files

Nanorc files can be used to configure nano to your liking without using
command-line options. During startup nano will normally read two files:
first the system-wide file, /etc/nanorc (the exact path may be differ-
ent on your system), and then the user-specific file, either ~/.nanorc or
$XDG_CONFIG_HOME/nano/nanorc or .config/nano/nanorc, whichever ex-
ists first. However, if --rcfile is given, nano will skip the above files and
will read just the specified settings file.

A nanorc file can contain set and unset commands for various options
(see Section 8.1 [Settings], page 17). It can also contain commands that
define syntax highlighting (see Section 8.2 [Syntax Highlighting], page 24)
and commands that rebind keys (Section 8.3 [Rebinding Keys], page 27).
Each command should be on a separate line, and all commands should be
written in lowercase.

Options that do not take an argument are unset by default. So using
the unset command is only needed when wanting to override a setting from
the system’s nanorc file in your own nanorc. Options that take an argument
cannot be unset, but can be assigned the empty string.

Any command-line option overrides its nanorc setting, of course.

Quotes inside the characters parameters below should not be escaped.
The last double quote on the line will be seen as the closing quote.

8.1 Settings
The supported settings in a nanorc file are:

set afterends
Make Ctrl+Right and Ctrl+Delete stop at word ends instead
of beginnings.

set allow_insecure_backup
When backing up files, allow the backup to succeed even if its
permissions can’t be (re)set due to special OS considerations.
You should NOT enable this option unless you are sure you
need it.

set atblanks
When soft line wrapping is enabled, make it wrap lines at blank
characters (tabs and spaces) instead of always at the edge of the
screen.

set autoindent
Automatically indent a newly created line to the same number
of tabs and/or spaces as the previous line (or as the next line if
the previous line is the beginning of a paragraph).

Chapter 8: Nanorc Files 18

set backup
When saving a file, back up the previous version of it, using the
current filename suffixed with a tilde (~).

set backupdir "directory"
Make and keep not just one backup file, but make and keep
a uniquely numbered one every time a file is saved — when
backups are enabled with set backup or --backup or -B. The
uniquely numbered files are stored in the specified directory.

set boldtext
Use bold instead of reverse video for the title bar, status
bar, key combos, function tags, line numbers, and selected
text. This is overridden by setting the options titlecolor,
statuscolor, keycolor, functioncolor, numbercolor, and/or
selectedcolor.

set bookstyle
When justifying, treat any line that starts with whitespace as
the beginning of a paragraph (unless auto-indenting is on).

set brackets "characters"
Set the characters treated as closing brackets when justifying
paragraphs. This may not include blank characters. Only
closing punctuation (see set punct), optionally followed by the
specified closing brackets, can end sentences. The default value
is ""’)>]}".

set breaklonglines
Automatically hard-wrap the current line when it becomes over-
long.

set casesensitive
Do case-sensitive searches by default.

set constantshow
Constantly display the cursor position on the status bar. Note
that this overrides quickblank.

set cutfromcursor
Use cut-from-cursor-to-end-of-line by default, instead of cutting
the whole line.

set emptyline
Do not use the line below the title bar, leaving it entirely blank.

set errorcolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the status bar when an error
message is displayed. The default value is bold,white,red. See
[set keycolor], page 19, for valid color names.

Chapter 8: Nanorc Files 19

set fill number
Set the target width for justifying and automatic hard-wrapping
at this number of columns. If the value is 0 or less, wrapping
will occur at the width of the screen minus number columns,
allowing the wrap point to vary along with the width of the
screen if the screen is resized. The default value is -8.

set functioncolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the concise function descriptions
in the two help lines at the bottom of the screen. See [set
keycolor], page 19, for valid color names.

set guidestripe number
Draw a vertical stripe at the given column, to help judge the
width of the text. (The color of the stripe can be changed with
set stripecolor.)

set historylog
Save the last hundred search strings and replacement strings
and executed commands, so they can be easily reused in later
sessions.

set indicator
Display a "scrollbar" on the righthand side of the edit window.
It shows the position of the viewport in the buffer and how much
of the buffer is covered by the viewport.

set jumpyscrolling
Scroll the buffer contents per half-screen instead of per line.

set keycolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the shortcut key combos in the
two help lines at the bottom of the screen. Valid names for
the foreground and background colors are: red, green, blue,
magenta, yellow, cyan, white, and black. Each of these eight
names may be prefixed with the word light to get a brighter
version of that color. The word grey or gray may be used as a
synonym for lightblack. On a Linux console, light does not
have any effect for a background color.

On terminal emulators that can do at least 256 colors, other
valid (but unprefixable) color names are: pink, purple, mauve,
lagoon, mint, lime, peach, orange, latte, rosy, beet, plum,
sea, sky, slate, teal, sage, brown, ocher, sand, tawny, brick,
crimson, and normal — where normal means the default fore-
ground or background color. On such emulators, the color may
also be specified as a three-digit hexadecimal number prefixed
with #, with the digits representing the amounts of red, green,
and blue, respectively. This tells nano to select from the avail-
able palette the color that approximates the given values.

Chapter 8: Nanorc Files 20

Either fgcolor or ,bgcolor may be left out, and the pair may be
preceded by bold and/or italic (separated by commas) to get
a bold and/or slanting typeface, if your terminal can do those.

set linenumbers
Display line numbers to the left of the text area. (Any line with
an anchor additionally gets a mark in the margin.)

set locking
Enable vim-style lock-files for when editing files.

set magic When neither the file’s name nor its first line give a clue, try
using libmagic to determine the applicable syntax. (Calling lib-
magic can be relatively time consuming. It is therefore not done
by default.)

set matchbrackets "characters"
Specify the opening and closing brackets that can be found by
bracket searches. This may not include blank characters. The
opening set must come before the closing set, and the two sets
must be in the same order. The default value is "(<[{)>]}".

set minibar
Suppress the title bar and instead show information about the
current buffer at the bottom of the screen, in the space for the
status bar. In this "mini bar" the filename is shown on the left,
followed by an asterisk if the buffer has been modified. On the
right are displayed the current line and column number, the code
of the character under the cursor (in Unicode format: U+xxxx),
the same flags as are shown by set stateflags, and a percent-
age that expresses how far the cursor is into the file (linewise).
When a file is loaded or saved, and also when switching between
buffers, the number of lines in the buffer is displayed after the
filename. This number is cleared upon the next keystroke, or
replaced with an [i/n] counter when multiple buffers are open.
The line plus column numbers and the character code are dis-
played only when set constantshow is used, and can be toggled
on and off with M-C. The state flags are displayed only when set
stateflags is used.

set minicolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the mini bar. (When this option
is not specified, the colors of the title bar are used.) See [set
keycolor], page 19, for valid color names.

set mouse Enable mouse support, so that mouse clicks can be used to place
the cursor, set the mark (with a double click), or execute short-
cuts.

Chapter 8: Nanorc Files 21

set multibuffer
When reading in a file with ^R, insert it into a new buffer by
default.

set noconvert
Don’t convert files from DOS/Mac format.

set nohelp
Don’t display the help lists at the bottom of the screen.

set nonewlines
Don’t automatically add a newline when a text does not end
with one. (This can cause you to save non-POSIX text files.)

set nowrap
Deprecated option since it has become the default setting. When
needed, use unset breaklonglines instead.

set numbercolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for line numbers. See [set
keycolor], page 19, for valid color names.

set operatingdir "directory"
nano will only read and write files inside "directory" and its
subdirectories. Also, the current directory is changed to here,
so files are inserted from this directory. By default, the operating
directory feature is turned off.

set positionlog
Save the cursor position of files between editing sessions. The
cursor position is remembered for the 200 most-recently edited
files.

set preserve
Preserve the XON and XOFF keys (^Q and ^S).

set promptcolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the prompt bar. (When this
option is not specified, the colors of the title bar are used.) See
[set keycolor], page 19, for valid color names.

set punct "characters"
Set the characters treated as closing punctuation when justify-
ing paragraphs. This may not include blank characters. Only
the specified closing punctuation, optionally followed by closing
brackets (see set brackets), can end sentences. The default
value is "!.?".

set quickblank
Make status-bar messages disappear after 1 keystroke instead of
after 20. Note that option constantshow overrides this. When

Chapter 8: Nanorc Files 22

option minibar or zero is in effect, quickblank makes a mes-
sage disappear after 0.8 seconds instead of after the default 1.5
seconds.

set quotestr "regex"
Set the regular expression for matching the quoting part of a line.
The default value is "^([\t]*([!#%:;>|}]|//))+". (Note
that \t stands for a literal Tab character.) This makes it possi-
ble to rejustify blocks of quoted text when composing email, and
to rewrap blocks of line comments when writing source code.

set rawsequences
Interpret escape sequences directly, instead of asking ncurses
to translate them. (If you need this option to get some keys to
work properly, it means that the terminfo terminal description
that is used does not fully match the actual behavior of your
terminal. This can happen when you ssh into a BSD machine,
for example.) Using this option disables nano’s mouse support.

set rebinddelete
Interpret the Delete and Backspace keys differently so that
both work properly. You should only use this option when on
your system either Backspace acts like Delete or Delete acts
like Backspace.

set regexp
Do regular-expression searches by default. Regular expressions
in nano are of the extended type (ERE).

set saveonexit
Save a changed buffer automatically on exit (^X); don’t prompt.

set scrollercolor fgcolor,bgcolor
Use this color combination for the indicator alias "scrollbar".
See [set keycolor], page 19, for valid color names.

set selectedcolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for selected text. See [set keycolor],
page 19, for valid color names.

set showcursor
Put the cursor on the highlighted item in the file browser, and
show the cursor in the help viewer, to aid braille users and people
with poor vision.

set smarthome
Make the Home key smarter. When Home is pressed anywhere
but at the very beginning of non-whitespace characters on a
line, the cursor will jump to that beginning (either forwards or
backwards). If the cursor is already at that position, it will jump
to the true beginning of the line.

Chapter 8: Nanorc Files 23

set softwrap
Display lines that exceed the screen’s width over multiple screen
lines. (You can make this soft-wrapping occur at whitespace in-
stead of rudely at the screen’s edge, by using also set atblanks.)

set speller "program [argument ...]"
Use the given program to do spell checking and correcting. See
[--speller], page 13, for details.

set spotlightcolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for highlighting a search match.
The default value is black,lightyellow. See [set keycolor],
page 19, for valid color names.

set stateflags
Use the top-right corner of the screen for showing some state
flags: I when auto-indenting, M when the mark is on, L when
hard-wrapping (breaking long lines), R when recording a macro,
and S when soft-wrapping. When the buffer is modified, a star
(*) is shown after the filename in the center of the title bar.

set statuscolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the status bar. See [set
keycolor], page 19, for valid color names.

set stripecolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the vertical guiding stripe. See
[set keycolor], page 19, for valid color names.

set tabsize number
Use a tab size of number columns. The value of number must
be greater than 0. The default value is 8.

set tabstospaces
Convert each typed tab to spaces — to the number of spaces
that a tab at that position would take up. (Note: pasted tabs
are not converted.)

set titlecolor [bold,][italic,]fgcolor,bgcolor
Use this color combination for the title bar. See [set keycolor],
page 19, for valid color names.

set trimblanks
Remove trailing whitespace from wrapped lines when automatic
hard-wrapping occurs or when text is justified.

set unix Save a file by default in Unix format. This overrides nano’s
default behavior of saving a file in the format that it had. (This
option has no effect when you also use set noconvert.)

Chapter 8: Nanorc Files 24

set whitespace "characters"
Set the two characters used to indicate the presence of tabs and
spaces. They must be single-column characters. The default
pair for a UTF-8 locale is "�·", and for other locales ">.".

set wordbounds
Detect word boundaries differently by treating punctuation
characters as part of a word.

set wordchars "characters"
Specify which other characters (besides the normal alphanu-
meric ones) should be considered as parts of words. When using
this option, you probably want to unset wordbounds.

set zap Let an unmodified Backspace or Delete erase the marked re-
gion (instead of a single character, and without affecting the
cutbuffer).

set zero Hide all elements of the interface (title bar, status bar, and help
lines) and use all rows of the terminal for showing the contents
of the buffer. The status bar appears only when there is a sig-
nificant message, and disappears after 1.5 seconds or upon the
next keystroke. With M-Z the title bar plus status bar can be
toggled. With M-X the help lines.

8.2 Syntax Highlighting
Coloring the different syntactic elements of a file is done via regular expres-
sions (see the color command below). This is inherently imperfect, because
regular expressions are not powerful enough to fully parse a file. Neverthe-
less, regular expressions can do a lot and are easy to make, so they are a
good fit for a small editor like nano.

See /usr/share/nano/ and /usr/share/nano/extra/ for the syntax-
coloring definitions that are available out of the box.

All regular expressions in nano are POSIX extended regular expressions
(ERE). This means that ., ?, *, +, ^, $, and several other characters are
special. The period . matches any single character, ? means the preceding
item is optional, * means the preceding item may be matched zero or more
times, + means the preceding item must be matched one or more times, ^
matches the beginning of a line, and $ the end, \< matches the start of a
word, and \> the end, and \s matches a blank. It also means that lookahead
and lookbehind are not possible. A complete explanation can be found in
the manual of GNU grep: info grep regular.

Each regular expression in a nanorc file should be wrapped in double
quotes (""). Multiple regular expressions can follow each other on a line by
separating them with blanks. This means that a regular expression cannot
contain a double quote followed by a blank. When you need this combination

Chapter 8: Nanorc Files 25

inside a regular expression, then either the double quote or the blank should
be put between square brackets ([]).

A separate syntax can be defined for each kind of file via the following
commands in a nanorc file:

syntax name ["fileregex" ...]
Start the definition of a syntax with this name. All subsequent
color and other such commands will be added to this syntax,
until a new syntax command is encountered.

When nano is run, this syntax will be automatically activated
(for the relevant buffer) if the absolute filename matches the
extended regular expression fileregex. Or the syntax can be
explicitly activated (for all buffers) by using the -Y or --syntax
command-line option followed by the name.

The default syntax is special: it takes no fileregex, and applies
to files that don’t match any syntax’s regexes. The none syntax
is reserved; specifying it on the command line is the same as not
having a syntax at all.

header "regex" ...
If from all defined syntaxes no fileregex matched, then compare
this regex (or regexes) against the first line of the current file,
to determine whether this syntax should be used for it.

magic "regex" ...
If no fileregex matched and no header regex matched either,
then compare this regex (or regexes) against the result of query-
ing the magic database about the current file, to determine
whether this syntax should be used for it. (This functional-
ity only works when libmagic is installed on the system and
will be silently ignored otherwise.)

formatter program [argument ...]
Run the given program on the full contents of the current buffer.

linter program [argument ...]
Use the given program to do a syntax check on the current buffer.

comment "string"
Use the given string for commenting and uncommenting lines. If
the string contains a vertical bar or pipe character (|), this des-
ignates bracket-style comments; for example, "/*|*/" for CSS
files. The characters before the pipe are prepended to the line
and the characters after the pipe are appended at the end of the
line. If no pipe character is present, the full string is prepended;
for example, "#" for Python files. If empty double quotes are
specified, the comment/uncomment functions are disabled; for
example, "" for JSON. The default value is "#".

Chapter 8: Nanorc Files 26

tabgives "string"
Make the <Tab> key produce the given string. Useful for lan-
guages like Python that want to see only spaces for indentation.
This overrides the setting of the tabstospaces option.

color [bold,][italic,]fgcolor,bgcolor "regex" ...
Paint all pieces of text that match the extended regular expres-
sion "regex" with the given foreground and background colors,
at least one of which must be specified. Valid color names are:
red, green, blue, magenta, yellow, cyan, white, and black.
Each of these eight names may be prefixed with the word light
to get a brighter version of that color. The word grey or gray
may be used as a synonym for lightblack. On a Linux console,
light does not have any effect for a background color.

On terminal emulators that can do at least 256 colors, other
valid (but unprefixable) color names are: pink, purple, mauve,
lagoon, mint, lime, peach, orange, latte, rosy, beet, plum,
sea, sky, slate, teal, sage, brown, ocher, sand, tawny, brick,
crimson, and normal — where normal means the default fore-
ground or background color. On such emulators, the color may
also be specified as a three-digit hexadecimal number prefixed
with #, with the digits representing the amounts of red, green,
and blue, respectively. This tells nano to select from the avail-
able palette the color that approximates the given values.

The color pair may be preceded by bold and/or italic (sepa-
rated by commas) to get a bold and/or slanting typeface, if your
terminal can do those.

All coloring commands are applied in the order in which they
are specified, which means that later commands can recolor stuff
that was colored earlier.

icolor [bold,][italic,]fgcolor,bgcolor "regex" ...
Same as above, except that the matching is case insensitive.

color [bold,][italic,]fgcolor,bgcolor start="fromrx" end="torx"
Paint all pieces of text whose start matches extended regular
expression "fromrx" and whose end matches extended regular
expression "torx" with the given foreground and background
colors, at least one of which must be specified. This means that,
after an initial instance of "fromrx", all text until the first in-
stance of "torx" will be colored. This allows syntax highlighting
to span multiple lines.

icolor [bold,][italic,]fgcolor,bgcolor start="fromrx"
end="torx"

Same as above, except that the matching is case insensitive.

Chapter 8: Nanorc Files 27

include "syntaxfile"
Read in self-contained color syntaxes from "syntaxfile". Note
that "syntaxfile" may contain only the above commands, from
syntax to icolor.

extendsyntax name command argument ...
Extend the syntax previously defined as "name" with another
command. This allows you to add a new color, icolor, header,
magic, formatter, linter, comment, or tabgives command to
an already defined syntax — useful when you want to slightly im-
prove a syntax defined in one of the system-installed files (which
normally are not writable).

8.3 Rebinding Keys
Key bindings can be changed via the following three commands in a nanorc
file:

bind key function menu
Rebinds key to function in the context of menu (or in all menus
where the function exists when all is used).

bind key "string" menu
Makes key produce string in the context of menu (or in all
menus where the key exists when all is used). Besides lit-
eral text and/or control codes, the string may contain function
names between braces. These functions will be invoked when
the key is typed. To include a literal opening brace, use {{}.

unbind key menu
Unbinds key from menu (or from all menus where the key exists
when all is used).

Note that bind key "{function}" menu is equivalent to bind key
function menu, except that for the latter form nano will check the
availability of the function in the given menu at startup time (and report
an error if it does not exist there), whereas for the first form nano will check
at execution time that the function exists but not whether it makes any
sense in the current menu. The user has to take care that a function name
between braces (or any sequence of them) is appropriate. Strange behavior
can result when it is not.

The format of key should be one of:

^X where X is a Latin letter, or one of several ASCII characters
(@,], \, ^,), or the word "Space". Example: ^C.

M-X where X is any ASCII character except [, or the word
"Space". Example: M-8.

Chapter 8: Nanorc Files 28

Sh-M-X where X is a Latin letter. Example: Sh-M-U. By de-
fault, each Meta+letter keystroke does the same as the cor-
responding Shift+Meta+letter. But when any Shift+Meta
bind is made, that will no longer be the case, for all letters.

Fn where n is a numeric value from 1 to 24. Example: F10.
(Often, F13 to F24 can be typed as F1 to F12 with Shift.)

Ins or Del

Rebinding ^M (Enter) or ^I (Tab) is probably not a good idea. Rebind-
ing ^[(Esc) is not possible, because its keycode is the starter byte of Meta
keystrokes and escape sequences. Rebinding any of the dedicated cursor-
moving keys (the arrows, Home, End, PageUp and PageDown) is not possi-
ble. On some terminals it’s not possible to rebind ^H (unless --raw is used)
because its keycode is identical to that of the Backspace key.

Valid names for the function to be bound are:

help Invokes the help viewer.

cancel Cancels the current command.

exit Exits from the program (or from the help viewer or file browser).

writeout Writes the current buffer to disk, asking for a name.

savefile Writes the current file to disk without prompting.

insert Inserts a file into the current buffer (at the current cursor posi-
tion), or into a new buffer when option multibuffer is set.

whereis Starts a forward search for text in the current buffer — or for
filenames matching a string in the current list in the file browser.

wherewas Starts a backward search for text in the current buffer — or for
filenames matching a string in the current list in the file browser.

findprevious
Searches the next occurrence in the backward direction.

findnext Searches the next occurrence in the forward direction.

replace Interactively replaces text within the current buffer.

cut Cuts and stores the current line (or the marked region).

copy Copies the current line (or the marked region) without deleting
it.

paste Pastes the currently stored text into the current buffer at the
current cursor position.

zap Throws away the current line (or the marked region). (This
function is bound by default to Alt+Delete.)

Chapter 8: Nanorc Files 29

chopwordleft
Deletes from the cursor position to the beginning of the
preceding word. (This function is bound by default to
Shift+Ctrl+Delete. If your terminal produces ^H for
Ctrl+Backspace, you can make Ctrl+Backspace delete the
word to the left of the cursor by rebinding ^H to this function.)

chopwordright
Deletes from the cursor position to the beginning of the next
word. (This function is bound by default to Ctrl+Delete.)

cutrestoffile
Cuts all text from the cursor position till the end of the buffer.

mark Sets the mark at the current position, to start selecting text.
Or, when it is set, unsets the mark.

location Reports the current position of the cursor in the buffer: the line,
column, and character positions.

wordcount
Counts and reports on the status bar the number of lines, words,
and characters in the current buffer (or in the marked region).

execute Prompts for a program to execute. The program’s output will
be inserted into the current buffer (or into a new buffer when
M-F is toggled).

speller Invokes a spell-checking program, either the default hunspell or
GNU spell, or the one defined by --speller or set speller.

formatter
Invokes a full-buffer-processing program (if the active syntax
defines one). (The current buffer is written out to a temporary
file, the program is run on it, and then the temporary file is read
back in, replacing the contents of the buffer.)

linter Invokes a syntax-checking program (if the active syntax de-
fines one). If this program produces lines of the form "file-
name:linenum:charnum: some message", then the cursor will be
put at the indicated position in the mentioned file while showing
"some message" on the status bar. You can move from message
to message with PgUp and PgDn, and leave linting mode with ^C
or Enter.

justify Justifies the current paragraph (or the marked region). A para-
graph is a group of contiguous lines that, apart from possibly
the first line, all have the same indentation. The beginning of
a paragraph is detected by either this lone line with a differing
indentation or by a preceding blank line.

Chapter 8: Nanorc Files 30

fulljustify
Justifies the entire current buffer (or the marked region).

indent Indents (shifts to the right) the current line or the marked lines.

unindent Unindents (shifts to the left) the current line or the marked lines.

comment Comments or uncomments the current line or the marked lines,
using the comment style specified in the active syntax.

complete Completes (when possible) the fragment before the cursor to a
full word found elsewhere in the current buffer.

left Goes left one position (in the editor or browser).

right Goes right one position (in the editor or browser).

up Goes one line up (in the editor or browser).

down Goes one line down (in the editor or browser).

scrollup Scrolls the viewport up one row (meaning that the text slides
down) while keeping the cursor in the same text position, if pos-
sible. (This function is bound by default to Alt+Up. If Alt+Up
does nothing on your Linux console, see the FAQ: https://
nano-editor.org/dist/latest/faq.html#4.1.)

scrolldown
Scrolls the viewport down one row (meaning that the text slides
up) while keeping the cursor in the same text position, if possi-
ble. (This function is bound by default to Alt+Down.)

center Scrolls the line with the cursor to the middle of the screen.

prevword Moves the cursor to the beginning of the previous word.

nextword Moves the cursor to the beginning of the next word.

home Moves the cursor to the beginning of the current line.

end Moves the cursor to the end of the current line.

beginpara
Moves the cursor to the beginning of the current paragraph.

endpara Moves the cursor to the end of the current paragraph.

prevblock
Moves the cursor to the beginning of the current or preceding
block of text. (Blocks are separated by one or more blank lines.)

nextblock
Moves the cursor to the beginning of the next block of text.

toprow Moves the cursor to the first row in the viewport.

https://nano-editor.org/dist/latest/faq.html#4.1
https://nano-editor.org/dist/latest/faq.html#4.1

Chapter 8: Nanorc Files 31

bottomrow
Moves the cursor to the last row in the viewport.

pageup Goes up one screenful.

pagedown Goes down one screenful.

firstline
Goes to the first line of the file.

lastline Goes to the last line of the file.

gotoline Goes to a specific line (and column if specified). Negative num-
bers count from the end of the file (and end of the line).

findbracket
Moves the cursor to the bracket (or brace or parenthesis, etc.)
that matches (pairs) with the one under the cursor. See [set
matchbrackets], page 20.

anchor Places an anchor at the current line, or removes it when already
present. (An anchor is visible when line numbers are activated.)

prevanchor
Goes to the first anchor before the current line.

nextanchor
Goes to the first anchor after the current line.

prevbuf Switches to editing/viewing the previous buffer when multiple
buffers are open.

nextbuf Switches to editing/viewing the next buffer when multiple
buffers are open.

verbatim Inserts the next keystroke verbatim into the file, or begins Uni-
code input when a hexadecimal digit is typed (see Section 3.2
[Entering Text], page 3, for details).

tab Inserts a tab at the current cursor location.

enter Inserts a new line below the current one.

delete Deletes the character under the cursor.

backspace
Deletes the character before the cursor.

recordmacro
Starts the recording of keystrokes — the keystrokes are stored
as a macro. When already recording, the recording is stopped.

runmacro Replays the keystrokes of the last recorded macro.

undo Undoes the last performed text action (add text, delete text,
etc).

Chapter 8: Nanorc Files 32

redo Redoes the last undone action (i.e., it undoes an undo).

refresh Refreshes the screen.

suspend Suspends the editor and returns control to the shell (until you
tell the process to resume execution with fg).

casesens Toggles whether searching/replacing ignores or respects the case
of the given characters.

regexp Toggles whether searching/replacing uses literal strings or regu-
lar expressions.

backwards
Toggles whether searching/replacing goes forward or backward.

older Retrieves the previous (earlier) entry at a prompt.

newer Retrieves the next (later) entry at a prompt.

flipreplace
Toggles between searching for something and replacing some-
thing.

flipgoto Toggles between searching for text and targeting a line number.

flipexecute
Switches from inserting a file to executing a command.

flippipe When executing a command, toggles whether the current buffer
(or marked region) is piped to the command.

flipnewbuffer
Toggles between inserting into the current buffer and into a new
empty buffer.

flipconvert
When reading in a file, toggles between converting and not con-
verting it from DOS/Mac format. Converting is the default.

dosformat
When writing a file, switches to writing a DOS format (CR/LF).

macformat
When writing a file, switches to writing a Mac format.

append When writing a file, appends to the end instead of overwriting.

prepend When writing a file, ’prepends’ (writes at the beginning) instead
of overwriting.

backup When writing a file, creates a backup of the current file.

discardbuffer
When about to write a file, discard the current buffer without
saving. (This function is bound by default only when option
--saveonexit is in effect.)

Chapter 8: Nanorc Files 33

browser Starts the file browser (in the Read File and Write Out menus),
allowing to select a file from a list.

gotodir Goes to a directory to be specified, allowing to browse anywhere
in the filesystem.

firstfile
Goes to the first file in the list when using the file browser.

lastfile Goes to the last file in the list when using the file browser.

nohelp Toggles the presence of the two-line list of key bindings at the
bottom of the screen. (This toggle is special: it is available in all
menus except the help viewer and the linter. All further toggles
are available in the main menu only.)

zero Toggles the presence of title bar and status bar.

constantshow
Toggles the constant display of the current line, column, and
character positions.

softwrap Toggles the displaying of overlong lines on multiple screen lines.

linenumbers
Toggles the display of line numbers in front of the text.

whitespacedisplay
Toggles the showing of whitespace.

nosyntax Toggles syntax highlighting.

smarthome
Toggles the smartness of the Home key.

autoindent
Toggles whether a newly created line will contain the same
amount of leading whitespace as the preceding line — or as the
next line if the preceding line is the beginning of a paragraph.

cutfromcursor
Toggles whether cutting text will cut the whole line or just from
the current cursor position to the end of the line.

breaklonglines
Toggles whether long lines will be hard-wrapped to the next line.
(The old name of this function, ’nowrap’, is deprecated.)

tabstospaces
Toggles whether typed tabs will be converted to spaces.

mouse Toggles mouse support.

Valid names for menu are:

Chapter 8: Nanorc Files 34

main The main editor window where text is entered and edited.

help The help-viewer menu.

search The search menu (AKA whereis).

replace The ’search to replace’ menu.

replacewith
The ’replace with’ menu, which comes up after ’search to re-
place’.

yesno The ’yesno’ menu, where the Yes/No/All/Cancel question is
asked.

gotoline The ’goto line (and column)’ menu.

writeout The ’write file’ menu.

insert The ’insert file’ menu.

browser The ’file browser’ menu, for selecting a file to be opened or in-
serted or written to.

whereisfile
The ’search for a file’ menu in the file browser.

gotodir The ’go to directory’ menu in the file browser.

execute The menu for inserting the output from an external command,
or for filtering the buffer (or the marked region) through an
external command, or for executing one of several tools.

spell The menu of the integrated spell checker where the user can edit
a misspelled word.

linter The linter menu, which allows jumping through the linting mes-
sages.

all A special name that encompasses all menus. For bind it means
all menus where the specified function exists; for unbind it
means all menus where the specified key exists.

35

9 Pico Compatibility

nano emulates Pico quite closely, but there are some differences between the
two editors:

Hard-Wrapping
Unlike Pico, nano does not automatically hard-wrap the cur-
rent line when it becomes overlong during typing. This hard-
wrapping can be switched on with the --breaklonglines op-
tion. With that option, nano by default breaks lines at screen
width minus eight columns, whereas Pico does it at screen width
minus six columns. You can make nano do as Pico by using
--fill=-6.

Scrolling
By default, nano will scroll just one line (instead of half a screen)
when the cursor is moved to a line that is just out of view. And
when paging up or down, nano keeps the cursor in the same
screen position as much as possible, instead of always placing it
on the first line of the viewport. The Pico-like behavior can be
obtained with the --jumpyscrolling option.

Edit Area Pico never uses the line directly below the title bar, leaving it
always blank. nano includes this line in the editing area, in order
to not waste space, and because in this way it is slightly clearer
where the text starts. If you are accustomed to this line being
empty, you can get it back with the --emptyline option.

Interactive Replace
Instead of allowing you to replace either just one occurrence of a
search string or all of them, nano’s replace function is interactive:
it will pause at each found search string and query whether to
replace this instance. You can then choose Yes, or No (skip
this one), or All (don’t ask any more), or Cancel (stop with
replacing).

Search and Replace History
When the option -H or --historylog is given (or set in a nanorc
file), text entered as search or replace strings is stored. These
strings can be accessed with the up/down arrow keys at their
respective prompts, or you can type the first few characters and
then use Tab to cycle through the matching strings. A retrieved
string can subsequently be edited.

Position History
When the option -P or --positionlog is given (or set in a
nanorc file), nano will store the position of the cursor when you
close a file, and will place the cursor in that position again when
you later reopen the file.

Chapter 9: Pico Compatibility 36

Current Cursor Position
The output of the "Display Cursor Position" command (^C)
displays not only the current line and character position of the
cursor, but also (between the two) the current column position.

Spell Checking
In the internal spell checker misspelled words are sorted alpha-
betically and trimmed for uniqueness, such that the words ’ap-
ple’ and ’Apple’ will be prompted for correction separately.

Writing Selected Text to Files
When using the Write-Out key (^O), text that has been selected
using the marking key (^^) can not just be written out to a new
(or existing) file, it can also be appended or prepended to an
existing file.

Reading Text from a Command
When using the Read-File key (^R), nano can not just read a
file, it can also read the output of a command to be run (^X).

Reading from Working Directory
By default, Pico will read files from the user’s home directory
(when using ^R), but it will write files to the current working
directory (when using ^O). nanomakes this symmetrical: always
reading from and writing to the current working directory — the
directory that nano was started in.

File Browser
In the file browser, nano does not implement the Add, Copy,
Rename, and Delete commands that Pico provides. In nano the
browser is just a file browser, not a file manager.

Toggles Many options which alter the functionality of the program can
be "toggled" on or off using Meta key sequences, meaning the
program does not have to be restarted to turn a particular fea-
ture on or off. See Chapter 7 [Feature Toggles], page 16, for a
list of options that can be toggled. Or see the list at the end of
the main internal help text (^G) instead.

37

10 Building and its Options

Building nano from source is straightforward if you are familiar with com-
piling programs with autoconf support:

tar -xf nano-x.y.tar.gz
cd nano-x.y
./configure
make
make install

The possible options to ./configure are:

--disable-browser
Exclude the file browser that can be called with ^T when wanting
to read or write a file.

--disable-color
Exclude support for syntax coloring. This also eliminates the -Y
command-line option, which allows choosing a specific syntax.

--disable-comment
Exclude the single-keystroke comment/uncomment function
(M-3).

--disable-extra
Exclude the Easter egg: a crawl of major contributors.

--disable-formatter
Exclude the code for calling a formatting tool.

--disable-help
Exclude the help texts (^G). This makes the binary much
smaller, but also makes it difficult for new users to learn more
than very basic things about using the editor.

--disable-histories
Exclude the code for handling the history files: the search and re-
place strings that were used, the commands that were executed,
and the cursor position at which each file was closed. This also
eliminates the -H and -P command-line options, which switch on
the storing of search/replace strings, executed commands, and
cursor positions.

--disable-justify
Exclude the text-justification functions (^J and M-J).

--disable-libmagic
Exclude the code for using the library of magic-number tests
(for determining the file type and thus which syntax to use for

Chapter 10: Building and its Options 38

coloring — in most cases the regexes for filename and header
line will be enough).

--disable-linenumbers
Exclude the ability to show line numbers. This also eliminates
the -l command-line option, which turns line numbering on.

--disable-linter
Exclude the code for calling a linting tool.

--disable-mouse
Exclude all mouse functionality. This also eliminates the -m
command-line option, which enables the mouse functionality.

--disable-multibuffer
Exclude support for opening multiple files at a time and switch-
ing between them. This also eliminates the -F command-line
option, which causes a file to be read into a separate buffer by
default.

--disable-nanorc
Exclude support for reading the nanorc files at startup. With
such support, you can store custom settings in a system-wide
and a per-user nanorc file rather than having to pass command-
line options to get the desired behavior. See Chapter 8 [Nanorc
Files], page 17, for more info. Disabling this also eliminates the
-I command-line option, which inhibits the reading of nanorc
files.

--disable-operatingdir
Exclude the code for setting an operating directory. This also
eliminates the -o command-line option, which sets the operating
directory.

--disable-speller
Exclude the code for spell checking. This also eliminates the -s
command-line option, which allows specifying an alternate spell
checker.

--disable-tabcomp
Exclude tab completion (when nano asks for a filename or search
string or replace string or command to execute).

--disable-wordcomp
Exclude word completion (^]).

--disable-wrapping
Exclude all hard-wrapping of overlong lines. This also eliminates
the -b and -w command-line options, which switch automatic
long-line wrapping on and off, respectively.

Chapter 10: Building and its Options 39

--enable-tiny
This option implies all of the above. It also disables some other
internals of the editor, like the function toggles, the marking
of text, the undo/redo code, line anchors, the recording and
playback of a macro, softwrapping, and the cut-to-end-of-line
code. These things stay disabled also when using the enabling
counterpart of the above options together with --enable-tiny
to switch specific features back on.

--enable-debug
Include some code for runtime debugging output. This can get
messy, so chances are you only want this feature when you’re
working on the nano source.

--disable-nls
Exclude Native Language support. This will disable the use of
any available GNU nano translations.

--enable-utf8
Include support for handling and displaying Unicode files. This
requires a "wide" version of the curses library.

--disable-utf8
Exclude support for handling and displaying Unicode files. Nor-
mally the configure script auto-detects whether to enable UTF-8
support or not. You can use this or the previous option to over-
ride that detection.

--enable-altrcname=name
Use the file with the given name (in the user’s home directory)
as nano’s settings file, instead of the default .nanorc.

i

Table of Contents

1 Introduction . 1

2 Invoking . 2

3 Editor Basics . 3
3.1 Screen Layout . 3
3.2 Entering Text . 3
3.3 Commands . 3
3.4 The Cutbuffer . 4
3.5 The Mark . 4
3.6 Search and Replace . 4
3.7 Using the Mouse . 5
3.8 Anchors . 5
3.9 Limitations . 5

4 The Help Viewer . 6

5 The File Browser . 7

6 Command-line Options . 8

7 Feature Toggles . 16

8 Nanorc Files . 17
8.1 Settings . 17
8.2 Syntax Highlighting . 24
8.3 Rebinding Keys . 27

9 Pico Compatibility . 35

10 Building and its Options . 37

	1 Introduction
	2 Invoking
	3 Editor Basics
	Screen Layout
	Entering Text
	Commands
	The Cutbuffer
	The Mark
	Search and Replace
	Using the Mouse
	Anchors
	Limitations

	4 The Help Viewer
	5 The File Browser
	6 Command-line Options
	7 Feature Toggles
	8 Nanorc Files
	Settings
	Syntax Highlighting
	Rebinding Keys

	9 Pico Compatibility
	10 Building and its Options

